
Component-based programming
A new programming paradigmA new programming paradigm

Karel Crombecq



Outline

• History of programming paradigms

• Issues with object-oriented programming

• Component-based programming: an alternative

• Practical issues• Practical issues

– Initialization

– Communication

– Change of mindset

• Implementation: the Cistron library

• Conclusion



Outline

• History of programming paradigms

• Issues with object-oriented programming

• Component-based programming: an alternative

• Practical issues• Practical issues

– Initialization

– Communication

– Change of mindset

• Implementation: the Cistron library

• Conclusion



Definition

• Programming paradigm:

A programming paradigm is a fundamental 

style of computer programming. Paradigms 

differ in the concepts and abstractions used to differ in the concepts and abstractions used to 

represent the elements of a program (such as 

objects, functions, variables, constraints, etc.) 

and the steps that compose a computation 

(assignment, evaluation, continuations, data 

flows, etc.).



History (1)

1. Low-level programming languages

(assembly & machine code)

• No abstraction

• No encapsulation• No encapsulation



History (2)

2. Procedural programming languages

(C, BASIC, Fortran, …)

• Abstraction using routines/procedures/functions

• No encapsulation: data and methods are not• No encapsulation: data and methods are not

encapsulated in one package



History (3)

3. Object-oriented programming languages

(C++, C#, PHP5, …)

• Abstraction through classes

• Encapsulation through private members• Encapsulation through private members

members

• Inheritance/polymorphism



History (4)

4. Alternative paradigms:

• Logic programming (Prolog)

• Functional programming (Lisp)

• Component-based programming• Component-based programming



What this is NOT about…

• Component-based programming,

according to Wikipedia:

Component-based software engineering is a branch of Component-based software engineering is a branch of 

software engineering which emphasizes the separation 

of concerns in respect of the wide-ranging functionality 

available throughout a given software system.

An individual component is a software package, a web 

service, or a module that encapsulates a set of related 

functions (or data).



Outline

• History of programming paradigms

• Issues with object-oriented programming

• Component-based programming: an alternative

• Practical issues• Practical issues

– Initialization

– Communication

– Change of mindset

• Implementation: the Cistron library

• Conclusion



The Blob (anti)pattern

• Modelling our world with traditional OO 

methodology:

Object

LivingObject StaticObject

Human
eat(food)

walk(x,y)

Bird
fly(x,y)

Chair
occupy(person)

Wall
paint(color)



The Blob (anti)pattern

• Modelling our world with traditional OO 

methodology:

Object

LivingObject StaticObject

Human
eat(food)

walk(x,y)

Bird
fly(x,y)

Chair
occupy(person)

Wall
paint(color)

Can also be

painted!



The Blob (anti)pattern

• Modelling our world with traditional OO 

methodology:

Object

LivingObject StaticObject
paint(color)

Human
eat(food)

walk(x,y)

Bird
fly(x,y)

Chair
occupy(person)

Wall



The Blob (anti)pattern

• Modelling our world with traditional OO 

methodology:

Object

LivingObject StaticObject
paint(color)

Human
eat(food)

walk(x,y)

Bird
fly(x,y)

Chair
occupy(person)

Wall

Can also be

painted!



The Blob (anti)pattern

• Modelling our world with traditional OO 

methodology:
Object

paint(color)

LivingObject StaticObject

Human
eat(food)

walk(x,y)

Bird
fly(x,y)

Chair
occupy(person)

Wall



The Blob (anti)pattern

• Modelling our world with traditional OO 

methodology:
Object

paint(color)

LivingObject StaticObject

Human
eat(food)

walk(x,y)

Bird
fly(x,y)

Chair
occupy(person)

Wall

Someone can sit

on someone

else!

Can also eat

food, can also sit

on someone, and 

can also walk!

Ejection seats

from aircraft can

fly!



The Blob (anti)pattern

• Modelling our world with traditional OO 

methodology: BLOB

paint(color)

eat(food)

walk(x,y)

fly(x,y)

All functionality

contained in base 

class
fly(x,y)

occupy(something)

LivingObject StaticObject

Human Bird Chair Wall

Cannot be painted, 

yet still has the 

functionality

class



The Blob (anti)pattern

• Very common in deep class hierarchies

• Ironically, traditional OO only good for

relatively shallow hierarchies

�possible solution:

component-based programming!

(also known as data-driven programming)

(also known as entity-driven programming)



Outline

• History of programming paradigms

• Issues with object-oriented programming

• Component-based programming: an alternative

• Practical issues• Practical issues

– Initialization

– Communication

– Change of mindset

• Implementation: the Cistron library

• Conclusion



Component-based programming

• Each object is a list of components

• Each component encapsulates a property of 
the object (variables and methods)

• Uses principles of OO, but avoids deep class• Uses principles of OO, but avoids deep class
hierarchies

• Components can communicate with each
other

– Directly (function calls)

– Indirectly (message passing)



Our world using components

Walker
Walk(x,y)

Flyer
fly(x,y)

Sittable
occupy(person)

Paintable
paint(color)

Component

Components

Human
Walker

Paintable

Bird
Flyer

Walker

Chair
Sittable

Paintable

Wall
Paintable

Walk(x,y) fly(x,y) occupy(person) paint(color)

Objects



Why not use multiple inheritance?

Walker
Walk(x,y)

Flyer
fly(x,y)

Sittable
occupy(person)

Paintable
paint(color)

Component

Human
Walker

Paintable

Bird
Flyer

Walker

• Each object will have multiple instances

of the Component superclass

• Objects are statically defined – no

dynamic object composition possible

• If a component changes its source code, 

every object has to be recompiled

• Initialization order is undefined by ISO 

C++ standard

• Components cannot be added or

destroyed individually



Outline

• History of programming paradigms

• Issues with object-oriented programming

• Component-based programming: an alternative

• Practical issues• Practical issues

– Initialization

– Communication

– Change of mindset

• Implementation: the Cistron library

• Conclusion



Initialization

• Objects can be defined:

– Statically (hard-coded in the source code)

– Dynamically (pulled from file, e.g. xml)

• Dynamic object composition has many• Dynamic object composition has many
advantages:

– New objects can be created without recompiling
the code

– Objects and their properties can easily be
adjusted and tweaked after compilation



Initialization (2)

• XML example with dynamic loading:

<objects>

<Human>

<Walker speed=“5.0”/>

<Paintable/><Paintable/>

</Human>

<Bird>

<Walker speed=“2.0”/>

<Flyer speed=“10.0”/>

</Bird>

</objects>



Initialization (3)

• C++ example with static loading:

Object *obj = new Object();

Walker *walker = new Walker();

walker->setSpeed(5.0);walker->setSpeed(5.0);

obj->addComponent(walker);

obj->addComponent(new Paintable());



Our world using components, revisited

Walker
Walk(x,y)

Flyer
fly(x,y)

Sittable
occupy(person)

Paintable
paint(color)

Component

Components

Location
setLocation(x,y)

Human
Location

Walker

Paintable

Bird
Location

Flyer

Walker

Chair
Location

Sittable

Paintable

Wall
Location

Paintable

Walk(x,y) fly(x,y) occupy(person) paint(color)

Objects

setLocation(x,y)

getX()

getY()



Communication

• Components don’t function independently of 

each other (e.g. Walker and Flyer must be able

to change the Location of the object)

• Some means of communication is necessary• Some means of communication is necessary

• Two approaches (both viable):

– Direct communication using dynamic cast and 

function calls

– Indirect communication using message passing



Direct communication

• When added to an object, a component can

request pointers to other components of a 

particular type in the same object

• Flyer and Walker will request Location, • Flyer and Walker will request Location, 

because they want to be able to change it

• Dynamic cast is used to cast from Component 

base class



Direct communication (2)

• Code example:

void Walker::update() {

if (fIsWalking)

Component *comp = requestComponent(“Location”);

Location *loc = dynamic_cast<Location>(comp);Location *loc = dynamic_cast<Location>(comp);

loc->setLocation(x, y);

}

}



Indirect communication

• Messages are packets of data that are sent out by
one component, and received by the components
that subscribed to that message type

• A message has:
– A sender (component)– A sender (component)

– A set of subscribec receivers (also components)

– An optional payload (void pointer or boost::any)

– A range
• Only broadcast to subscribing components in the same

object

• Broadcast to every subscribing component in the system

• Broadcast to subscribing components in another object



Direct communication (2)

• Code example:

void Walker::update() {

if (fIsWalking)

sendMessage(“Move”, fNewLocation);

}}

}

void Location::receiveMessage(Message msg) {

if (msg.type == “Move”) {

setLocation(msg.payload);

}

}



Comparison

• Direct communication
– Is fast and efficient

– Is convenient (most closely resembles traditional OO programming
practices)

– Requires that components “know” each other – some
independence is lostindependence is lost

• Indirect communication
– Is highly flexible (components do not need to know of each other’s

existence)

– Requires no dynamic_cast

– May require uglier casts if payload is necessary

– May be impractical if a lot of complex communication is necessary

– Is difficult to debug!



Change of mindset

• Most difficult aspect about component-based

programming: changing the way you think

about implementing stuff

• Theory is simple; changing your code-style• Theory is simple; changing your code-style

from classical OO programming to 

component-based programming is difficult



Change of mindset (2)

• Concrete real-world objects can easily be converted to 
component-based entities because their properties are 
intuitive

• More abstract concepts, such as “Game”, “AI” and 
“Network” may be more difficult to adapt

• Not every part of the software needs to be a Component, • Not every part of the software needs to be a Component, 
but many may benefit from being one

• For example, by making your network controller part of 
your component system, it can:
– Receive messages between components, and send the data 

across the network for synching with the other side

– Resolve packetloss/lag issues, by broadcasting messages that
tell the components about network communication conflicts



Change of mindset (3)

• When you try programming component-based
for the first time, you might get stuck

– It took me several iterations to get a quad tree right

• Don’t give up: it’s absolutely worth it!

– In our example: adding a Swimmer component is 
trivial and requires no changes to Walker or Flyer at 
all!

• Use a good component-based framework to have 
most of the work (communication in particular) 
done for you



Quad tree example

• First attempt:

– All leaves are Components

– Object (quad tree) is a collection of Leaf

components with parent links between themcomponents with parent links between them

– Each Leaf component holds a list of Location

components

� Inefficient! Communication is way too slow.



Quad tree, first attempt

QuadTree
List<Leaf>

Leaf
List<Location>

Component

Components

Location
setLocation(x,y)List<Leaf> List<Location> setLocation(x,y)

getX()

getY()



Quad tree example (2)

• Second attempt:

– QuadTree is a component

– QuadTree is in object which also contains NetworkController, 
OpenGLController, etc (global Game object)

– Quad tree has list of Location components, and resolves– Quad tree has list of Location components, and resolves
collisions between them

– Once a collision is found, both objects that contain the 
colliding Location components are notified through a message

� Efficient! But what if there are many types of collisions? 
And many components that may influence the collision or the 
consequences of the collision?



Quad tree, second attempt

QuadTree
List<Leaf>

Leaf
List<Location>

Component

Components

Location
setLocation(x,y)List<Leaf> List<Location> setLocation(x,y)

getX()

getY()



Quad tree example (3)

• Third attempt:

– QuadTree is a component

– QuadTree is in object which also contains
NetworkController, OpenGLController, etc (global Game 
object)object)

– BoundingBox, BoundingSphere etc are components that
request both the QuadTree and the Location components

– In the update() function, BoundingBox requests all nearby
components from QuadTree, and solves everything
internally

� Efficient AND flexible!



Quad tree, third attempt

QuadTree
List<Leaf>

Leaf
List<Location>

Component

Components

Location
setLocation(x,y)

BoundingBox
quadTree List<Leaf> List<Location> setLocation(x,y)

getX()

getY()

BoundingSphere
quadTree

resolveCollision()

quadTree

resolveCollision()



Outline

• History of programming paradigms

• Issues with object-oriented programming

• Component-based programming: an alternative

• Practical issues• Practical issues

– Initialization

– Communication

– Change of mindset

• Implementation: the Cistron library

• Conclusion



Cistron

• Component-based architecture aimed at game 

development (but not only useful for it)

• Solves the issue of communication

• Does not do dynamic initialization for you• Does not do dynamic initialization for you

– You can use it statically

– If you want to use it dynamically, use XML parser

• Open source

• Link: http://code.google.com/p/cistron



Cistron (2)

• Very light-weight and extremely efficient

– constant time message passing!

• Platform-independent

• Depends only on Boost library• Depends only on Boost library

– boost::any and boost::bind

• Uses fancy template programming to hide a 

lot of complexity and make the framework

easy to use



Component class

• Derive from this class to make a Component

• Implements following functions:

– void addedToObject();

• “Constructor”, for when the component is added to the • “Constructor”, for when the component is added to the 
engine, and can request/send messages and 
components

– void requestMessage(string msg, callbackFun);

• Request a message. Specify a callback function to be
called when such a message is received (can be
member function).



Component class (2)

• Functions:
– void requestComponent(string name, callbackFun)

• If a component of this type is added or removed, the 
callback function is called to notify this component of this
event.

– void sendMessage(string msg);– void sendMessage(string msg);
void sendMessage(MessageId msgId);

• Send a message out through the system. The message can
either be defined as:

– a string, which will require searching through a hash table to find
the subscribed receivers

– a MessageId (long), which is an index into a vector for constant-
time search for subscribed receivers



ObjectManager class

• ObjectManager is responsible for:

– Passing messages between objects

– Keeping track of all objects in the system, and 
their components

– Notifying components that other components
they requested are added/removed from the 
system

– Only functions available:

• ObjectId createObject();

• void addComponent(ObjectId, Component*);



Conclusions

• Component-based programming can be a very
viable alternative to traditional OO programming
when:
– Deep OO hierarchies are expected

– Dynamic composition of objects is useful– Dynamic composition of objects is useful

• Implementation can be tricky

• … but in the end, it’s often worth it!
– Many games are designed this way nowadays

• Use Cistron for a quick start!

http://code.google.com/p/cistron


